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Introduction

The Kronecker product of an m × n matrix A and an r × q matrix B, is an mr × nq
matrix, denoted by A⊗ B and defined as

A⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
am1B am2B . . . amnB

 .

Main properties of the Kronecker product are as follows.

A⊗ (B + C) = A⊗ B + A⊗ C ;

A⊗ (B ⊗ C) = (A⊗ B)⊗ C ;

αA⊗ βB = αβ(A⊗ B);

(A⊗ B)T = AT ⊗ BT;

(A⊗ B)−1 = A−1 ⊗ B−1;

(A⊗ B)(C ⊗ D) = AC ⊗ BD;

rank(A⊗ B) = rank(A)rank(B);

Tr(A⊗ B) = Tr(A)Tr(B);



Introduction

The vectorization (vec-operator) applied on a matrix A stacks the columns into a
vector. If a1, . . . an are columns of a matrix A, then

vec(A) =


a1
a2
...
an

 .

The vectorization has the following properties:

vec(A+ B) = vec(A) + vec(B)

vec(ABC) =
(
CT ⊗ A

)
vec(B)

vec(AB) = (Ip ⊗ A)vec(B) = (BT ⊗ Im)vec(A),

where A ∈ Cm×n, B ∈ Cn×p , C ∈ Cp×q .



Lecture 4:

Lecture 4:
- Recurrent Neural Networks (RNN),
- Continuous-time RNN, Gradient Neural Networks (GNN),
- GNN dynamics for solving linear matrix equations AXB=C,
- GNN for computing generalized inverses of constant matrices,
- GNN for solving systems of linear equations.



Introduction

There are two types of artificial neural networks (ANNs).
1. A feedforward neural network (FNN) is a type of ANNs where information moves in
one direction, from the input layer to the output layer, without any loops or cycles.
2. Recurrent Neural Networks (RNN) is one of the two broad types of ANNs that
allow the output from some nodes to affect subsequent input to the same nodes.

A continuous-time recurrent neural network (CTRNN) uses a system of ordinary
differential equations to define effects on incoming inputs on a neuron.

We will consider CTRNN dedicated to find zeros of equations or to minimize nonlinear
functions.

Two important classes of CTRNNs are known::
Gradient Neural Networks (GNN) and
Zhang Neural Networks (ZNN).

Our main objective is to describe the application of GNN dynamical systems in solving
numerical linear algebra problems, mainly in:

solving matrix equations,

solving systems of linear equations,

computing generalized inverses.



GNN dynamics

Main step in defining GNN dynamics.

Step1GNN. Define an appropriate error matrix E(t) on the basis of the matrix
equation which is currently being solved.

The error matrix E(t) is defined by replacing the unknown matrix from the considered
problem by the time-varying matrix V (t) which will be approximated during the time
t ≥ 0.

For example, the matrix equation AX = I is appropriate for computing the inverse
A−1.
In this case, E(t) = AV (t)− I .



GNN dynamics

The goal function of a Gradient Neural Network (GNN) model is the scalar function
which is defined by the Frobenius norm of E(t):

ε(t) =
∥E(t)∥2F

2
, ∥E∥F =

√
Tr(ETE).

Step2GNN. Apply the dynamic evolution, which is based on direct proportionality
between the time derivative V̇ (t) and the scaled negative gradient of the goal function
ε(t):

V̇ (t) =
dV (t)

dt
= −γ

∂ε(t)

∂V
, V (0) = V0. (1)

Here, V (t) is the matrix of activation state variables and t ∈ [0,+∞) is the time.
Larger values of the scaling parameter γ enable faster convergence.



GNN model

Assume that the discretization of the continuous-time linear GNN model is performed
by using the Euler forward-difference rule

V̇ (t) ≈ (Vk+1 − Vk )/τ,

where τ denotes the sampling time and Vk = V (t = kτ), k = 1, 2, . . ..

Then the discrete-time analogy of the GNN model is just a gradient descent method
for nonlinear optimization:

Vk+1 = Vk − β∇ε(Vk ), (2)

where β = τ γ > 0 is the step size.
Clearly, smaller sampling time τ can be achieved using larger values γ.



Introduction

The following properties of the matrix derivatives of the matrix trace are frequently
exploited.

(a)
∂

∂X
Tr(X ) = I ;

(b)
∂

∂X
Tr(XA) =

∂

∂X
Tr(AX ) = AT;

(c)
∂

∂X
Tr(AXB) = ATBT;

(d)
∂

∂X
Tr(AXTB) = BA;

(e)
∂

∂X
Tr(A⊗ B) = Tr(A)I ;

(f )
∂

∂X
Tr(X 2) = 2XT;

(g)
∂

∂X
Tr(XTAX ) = AX + ATX ;

(h)
∂

∂X
Tr(XTX ) =

∂

∂X
∥X∥2F = 2X ;

(i)
∂

∂X
Tr(XTAXB) = AXB + ATXBT.



GNN dynamics

The dynamic equation of the linear recurrent neural network for computing the inverse
of a nonsingular matrix A is initiated by the error matrix E(t) = AV (t)− I .

Since ε(V (t)) = 1
2
∥AV (t)− I∥2F = 1

2
Tr((AV (t)− I )T(AV − I )), matrix calculus gives

∂ε(V (t))

∂V
=

1

2

∂∥AV (t)− I∥2F
∂V

= AT (AV (t)− I ) .

Now, using the general GNN design, corresponding GNN dynamics can be described
as follows:

dV (t)

dt
= −γATAV (t) + γAT

= −γAT (AV (t)− I ) , V (0) = V0,

(3)

where V (t) is a matrix of activation state variables corresponding to the inverse
matrix of A, and γ is a positive gain parameter.

Further, V (0) = V0 denotes an arbitrary initial stage V0.



GNN dynamics
The GNN design corresponding to the matrix equation

AXB = D

was investigated and applied in
[NEUCOM 2018a][P.S. Stanimirović, M.D. Petković, Gradient neural dynamics for
solving matrix equations and their applications, Neurocomputing 306 (2018),
200–212.]

The error matrix is defined by E(t) = D − AV (t)B.

The scalar-valued norm-based error function is defined by the Frobenius norm of E(t):

ε(t) = ε(V (t)) =
1

2
∥E(t)∥2F =

1

2
∥D − AV (t)B∥2F .

According to ∂
∂X

Tr(AXB) = ATBT and the chain rule formula, the gradient of the
objective function ε(t) is equal to

∂ε(V (t))

∂V
= −AT(D − AV (t)B)BT = −ATE(t)BT.

According to the general GNN dynamics, defined in Step2GNN, the GNN model for
solving AXB = D is defined as

dV (t)

dt
= V̇ (t) = γAT(D − AV (t)B)BT. (4)

The GNN model in (4) will be denoted by GNN(A,B,D).



GNN model

Convergence of the GNN(A,B,D) model is defined in the next theorem.
The limiting value Ṽ of V (t) is determined by the choice of V (0). For this purpose, it
will be denoted by ṼV (0).



GNN model

Theorem 1

[NEUCOM 2018a] Assume that the real matrices A ∈ Rm×n, B ∈ Rp×q and
D ∈ Rm×q satisfy

AA(1)DB(1)B = D. (5)

Then the state matrix V (t) ∈ Rn×m of the GNN(A,B,D) model (4) satisfies:

AV (t)B → D, t → +∞ (6)

for an arbitrary initial state matrix V (0).



Proof. Firstly, Fulfillment of (12) for some A(1) ∈ A{1} and B(1) ∈ B{1} ensures
solvability of the matrix equation AXB = D. The substitution
V (t) = V (t) + A(1)DB(1) transforms the dynamics (4) into the equivalent form

dV (t)

dt
=

dV (t)

dt
= γATF (D − AV (t)B)BT

= γATF
(
D − A

(
V (t) + A(1)DB(1)

)
B
)
BT.

According to (12), it follows

dV (t)

dt
= γATF

(
D − AA(1)DB(1)B − AV (t)B

)
BT = −γATF

(
AV (t)B

)
BT.

(7)
The Lyapunov function candidate is

L(V (t), t) :=
1

2

∥∥∥V (t)
∥∥∥2
F
=

1

2
Tr
(
V (t)T V (t)

)
. (8)

Evidently, the inequality L(V (t), t) ≥ 0 holds for V (t) ̸= 0. According to (8),
assuming (7) and using dTr

(
XTX

)
= 2Tr

(
XTdX

)
in conjunction with basic

properties of the matrix trace function, one can express the time derivative of



L(V (t), t) as in the following:

dL(V (t), t)

dt
= Tr

(
V (t)T

dV (t)

dt

)
= −γTr

[
V (t)T ATF

(
AV (t)B

)
BT
]

= −γTr

[
BT
(
AV (t)

)T
F
(
AV (t)B

)]
= −γTr

[(
AV (t)B

)T
F
(
AV (t)B

)]
.

(9)

Since the scalar-valued function f (·) is an odd and monotonically increasing,
immediately follows f (−x) = −f (x) and

f (x)

 > 0 if x > 0,
= 0 if x = 0,
< 0 if x < 0,

which in conjunction with γ > 0 implies for
W (t) = AV (t)B = A

(
V (t)− A(1)DB(1)

)
B = AV (t)B − D

dL(V (t), t)

dt
= −γTr

[(
WTF(W )

)]
= −γ

m∑
i=1

n∑
j=1

wij f (wij )

{
< 0 if AV (t)B ̸= 0,

= 0 if AV (t)B = 0.

(10)



Now, the conclusion is

dL(V (t), t)

dt

{
< 0 if W (t) ̸= 0,
= 0 if W (t) = 0.

(11)

This further implies:

- dL(V (t),t)
dt

< 0 at any non-equilibrium state V (t) satisfying W (t) = AV (t)B −D ̸= 0;

- dL(V (t),t)
dt

= 0 at the equilibrium state V (t) satisfying W (t) = AV (t)B − D = 0.
According to the Lyapunov stability theory, W (t) = AV (t)B −D globally converges to
the zero matrix, from arbitrarily chosen V (0).



GNN dynamics

Theorem 2

[NEUCOM 2018a] Assume that the real matrices A ∈ Rm×n, B ∈ Rp×q and
D ∈ Rm×q satisfy

AA†DB†B = D. (12)

Then the state matrix V (t) ∈ Rn×m of the GNN(A,B,D) model (4) satisfies:

AV (t)B → D, t → +∞

ṼV (0) = lim
t→∞

V (t) = A†DB† + V (0)− A†AV (0)BB† (13)

for an arbitrary initial state matrix V (0).



GNN dynamics

Proof. In view of (4), the matrix V1(t) = A†AV (t)BB† satisfies

dV1(t)

dt
= γA†A

dV (t)

dt
BB† = γA†AATF (E(t))BTBB†.

According to the basic properties of the Moore-Penrose inverse, it follows that
BTBB† = BT, A†AAT = AT which further implies

dV1(t)

dt
= γATF (E(t))BT

=
dV (t)

dt
.

Consequently, V2(t) = V (t)− V1(t) satisfies dV2(t)
dt

= 0, which implies

V2(t) = V2(0) = V (0)− V1(0) = V (0)− A†AV (0)BB†, t ≥ 0. (14)

Furthermore, according to Theorem 2, AV (t)B → D and V1(t) converges to

V1(t) = A†(AV (t)B)B† → A†DB†, t → +∞.

Accordingly, having in mind (14), V (t) is convergent and its equilibrium value is

V (t) = V1(t) + V2(t) → Ṽ = A†DB† + V2(0)

= A†DB† + V (0)− A†AV (0)BB†,

which is just a confirmation of (13).



GNN dynamics

It is known that
∥AXB − D∥2 ≥ ∥AA†DB†B − D∥2,

where the equality is valid if and only if

X = A†DB† + Y − A†AYBB†, (15)

wherein Y is arbitrary matrix of appropriate dimensions.

Accordingly, (15) defines the set of least squares solutions to AXB = D.

In addition, A†DB† is the unique minimizer of minimal norm between least squares
minimizers:

∥A†DB†∥2 ≤ ∥A†DB† + Y − A†AYB†B∥2.



LS properties of the GNN(A,B,D) model

The following comments can be mentioned:
(i) Any solution

ṼV (0) = A†DB† + V (0)− A†AV (0)BB†

generated by the GNN(A,B,D) model (4) can be derived from the general LS solution

A†DB† + Y − A†AYBB†, Y arbitrary

to the matrix equation AXB = D by replacing the arbitrary matrix Y from the LS
solution by the initial state matrix V (0).

(ii) The Moore-Penrose solution (i.e., the minimal norm least squares solution)
Ṽ0 = A†DB† to the matrix equation AXB = D can be generated by GNN(A,B,D)
using the zero initial state V (0) = 0.

Corollary 1

Assume that the real matrices A ∈ Rm×n, B ∈ Rp×q and D ∈ Rm×q satisfy (??).
Further, let an odd and monotonically increasing function f (·) be used to define the
array activation function F(·) and the design parameter γ satisfy γ > 0. Let ṼV (0)

denotes the limit value Ṽ = limt→∞ V (t) corresponding to the initial state V (0).
Then the equilibrium state matrix ṼV (0) of GNN(A,B,D) satisfies{

A ṼV (0) B| V (0) ∈ Rn×m
}

= {D}. (16)

for each V (0) ∈ Rn×m.



Lecture 6:, Tutorial 3:

Lecture 6:
- Design parameters in GNN evolutionary design.
- Properties of activation functions in RNN, overview of commonly used activation
functions (AFs): linear, bipolar sigmoid, power AF, power-sigmoid, hyperbolic sine,
sign-bi-power, tunable AF.
- Influence of gain parameters and activations functions on the convergence speed.

Tutorial 3:
- Implementation of ZNN models for solving various time-varying matrix equations.
- Applications in computing generalized inverses and solving linear systems.



Main activation functions

The nonlinear gradient-based neural dynamics exploits acceleration by the nonlinear
activation function array F():

dV (t)

dt
= V̇ (t) = γ F

(
∂ε(t)

∂V

)
.

An activation function F is defined on a real matrix C = (cij ) ∈ Rm×n by the
element-wise application F(C) = (f (cij )) of an odd and monotonically increasing
function f .Monotonically increasing and odd activation functions:
(1) Linear function:

f (x) = x .

(2) Bipolar-sigmoid activation function:

f (x) =
1 + exp(−ϱ)

1− exp(−ϱ)
·
1− exp(−ϱx)

1 + exp(−ϱx)
, q > 2.

(3) Power-sigmoid function:

f (x) =


xρ, if |x | ≥ 1

1 + exp(−ϱ)

1− exp(−ϱ)
·
1− exp(−ϱx)

1 + exp(−ϱx)
, otherwise

,

where ϱ > 2, ρ ≥ 3.



Main activation functions

(4) Sign-bi-power function (Li function):

f (x) =
1

2
|x |r sign(x) +

1

2
|x |

1
r sign(x),

where 0 < r < 1.
(5) Tunable sign-bi-power function (Tunable function):

f (x) =
1

2
k1|x |r sign(x) +

1

2
k2x +

1

2
k3|x |

1
r sign(x),

where k1 > 0, k2 > 0, k3 > 0, 0 < r < 1.



Main activation functions

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−6

−4

−2

0

2

4

6

x

f(
x
)

 

 
linear function

bipolar sigmoid fuction

Smooth power−sigmoid function

power sigmoid function

Figure 1: Behavior of the four basic types of activation functions

Accordingly, the nonlinear GNN model for solving AXB = D is defined as

dV (t)

dt
= V̇ (t) = γATF(D − AV (t)B)BT. (17)



Main activation functions

The sign activation funtion

sign(u) =


1, u > 0

0, u = 0

−1, u < 0

(18)

Figure 2: Simulink block of sign activation function (18).



Main activation functions

Previous nonlinear AFs in ZNN formula are used to accelerate the convergence speed
in finite or predefined time. Some of them are referred as follows.
Li or sign-bi-power (sbp) activation function

sbp(u) = sgnq(u) + sgn
1
q (u), (19)

Figure 3: Simulink block of Li activation function (19).

where

sgnq(u) = |u|qsign(u) =


|u|q, u > 0

0, u = 0

−|u|q, u < 0

, q ∈ (0, 1). (20)



Main activation functions

- The tunable activation function

G(u) = (|u|q + |u|+ |u|
1
q )sign(u), (21)

(|u|
p
+u|

1/p
+|u|))sign(u)

|u|
p

|u|
1/p

|u|

sign(u)

|u|
p
+|u|

1/p
+|u|

1

Out1

1

In1

|u|

Abs

u
v

Math
Function

p

Constant

|u|

Abs1

u
v

Math
Function1

1/p

Constant1

Product

Sign1

|u|

Abs2

Figure 4: Simulink block of Tunable activation function (21).



Main activation functions

- The versatile activation function (VAF)

G(u) = (a1|u|q + a2|u|w)sign(u) + a3u+ a4sign(u), (22)

where a1, a2 > 0, a3, a4 ≥ 0 and w > 1.

(a
1
|u|
h
+a
2
|u|
w
)sign(u)+a

3
u+a

4
sign(u)

a
3
u

(a
1
|u|
h
+a
2
|u|
w
)sign(u)

a
2
|u|
w

sign(u)

a
1
|u|
h

u
a
3
u

u sign(u)

a
4
sign(u)

a
1
|u|
h
+a
2
|u|
w

1

Out1

1

In1

|u|

Abs
u
v

Math

Function

Product
Sign

h

Constant

a1

Gain

|u|

Abs1

u
v

Math

Function1
w

Constant1

a2

Gain1

a3

Gain2

a4

Gain3Sign1

Figure 5: Simulink block of versatile activation function (VAF) (22).



Main activation functions

- The extended versatile activation function (EVAF) of order m

Gm(u) =

(
a1

m∑
k=1

|u|qk + a2

m∑
k=1

|u|wk

)
sign(u)+a3u+a4 sinh(u)+a5(exp(|u|)−1)sign(u),

(23)
where qk ∈ (0, 1), wk > 1, a1, a2, a3, a4 satisfy the same constraints as in previous
VAF (22), a5 ≥ 0 and k = 1, 2, . . . ,m. Suitable values for the remaining parameters
are 0 < q1 ≤ q2 ≤ · · · ≤ qm < 1 and 1 < w1 ≤ w2 ≤ · · · ≤ wm. For the purpose of
this tutorial we will use and design the EVAF activation function order 2:

G2(u) = (a1 (|u|q1 + |u|q2 ) + a2(|u|w1 + |u|w2 )) sign(u)+a3u+a4 sinh(u)+a5(exp(|u|)−1)sign(u),
(24)

Figure 6: Simulink block of extended versatile activation function G2(u) (24).



Main activation functions
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Figure 7: Error comparison.

It is observable from Figure 7 that the extended versatile AF (24) includes faster
convergence property against previous activation functions because of Frobenius norm
||E(t)||F = ||Ax(t)− b||F vanish to zero in shorter time.



Tutorial 1:

Tutorial 1:
- Simulink as an efficient tool for agile software development.
- Simulink implementation of GNN for solving the general linear matrix equations
AXB=C.
- Simulink for GNN design for computing the matrix inverse, left and right inverse and
the Moore-Penrose generalized inverse.
- Simulink implementation of GNN models for solving systems of linear equations.



About Simulink modeling

What is a Simulink model?
A Simulink model is a graphical representation of a system created within the
Simulink environment, which is an add-on to MATLAB.
It allows users to design, simulate, and test systems using a block diagram approach,
where different components are represented as blocks connected by signals.
Users can create models by dragging and dropping blocks from libraries, representing
functions, components, and systems.

Why Simulink is used?
Simulink is used to model, simulate, and analyze dynamic systems.

Design. Simulate. Deploy.
Simulink is a block diagram environment used to design systems, simulate before
moving to hardware, and develop without writing code.

Why use Simulink instead of MATLAB?
You can also create custom blocks using MATLAB functions or other Simulink models.
Simulink blocks provide a visual representation of your system, which can help you to
verify its logic and behavior.
On the other hand, MATLAB code requires you to write and edit text commands,
which can be more complex and error-prone.

Creating a MATLAB Simulink model involves several steps, including defining the
system you want to simulate, building the model using blocks, and configuring the
parameters.



Simulink implementation of GNN dynamics

• The Constant block creates a complex or real constant value signal. The use of this
block is to give a constant signal input and can generate scalar, vector, or matrix
output.

• The Product block generates the result of multiplying two inputs and can be of two
scalars, product of a scalar and a nonscalar, or product of two nonscalars of
appropriate dimensions.

• The Product1 block can be derived from Product block and it is used for the
multiplication of two (or more) matrices.

• The Abs block returns the absolute value of the input.

• The Sum block returns the sum of two inputs and can be used for more than two
inputs.

• The Gain block multiplies the input by a constant value.

• The Display block represents the value of the input.

• The Scope block is used for the presentation of time domain signals.

• The To Workspace block is used to save the input to specified time series, array, or
structure in a workspace in Matlab.



GNN dynamics

• The Integrator block outputs the value of the integral of its input signal with
respect to time.

• The Math Function block includes different mathematical functions such as
logarithmic, exponential, power, modulus functions and etc.

• The Subsystem block includes a subset of blocks within a model or system and can
be used for the presentation of a virtual subsystem or a nonvirtual subsystem.

• The Interpreted Matlab Functions block applies specified Matlab function or
expression to the input data.



GNN dynamics

Figure 8: Basic Simulink blocks.



GNN dynamics

||I-AV(t)||
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Figure 9: Simulink implementation of (3) for computing A−1.



GNN dynamics

Consider the matrix

A =

 1 10 10
3 10 10
6 2 5


generated by the command A = randi([1 10],3,3). Using γ = 104 and the
zero initial state Simulink generates elemenwise trajectories as in Figure 10 in the time
interval [0.0.1] (left) and in [0.0.01] (right).

Time (seconds)

0 0.02 0.04 0.06 0.08 0.1

V
(t

)

-1

-0.5

0

0.5

1

Time (seconds)

0 0.002 0.004 0.006 0.008 0.01

V
(t

)

-1

-0.5

0

0.5

1

Figure 10: Elementwise trajectories of V (t) in [0, 0.1] (left) and in [0.0.01] (right).



GNN dynamics

The error norm ∥I − AV (t)∥F in the time interval [0.10−5] is presented in Figure 11,
left, for γ = 103,γ = 104 and γ = 106. The error norm in the time interval [0.10−1] is
presented in Figure 11, right, for γ = 102,γ = 103 and γ = 104.

-5

0 0.2 0.4 0.6 0.8 1

 

0

0.5

1

1.5

2
 

γ=10
3

γ=10
4

γ=10
6

 

0 0.02 0.04 0.06 0.08 0.1

 

0

0.5

1

1.5

2
 

γ=10
3

γ=10
4

γ=10
2

Figure 11: ∥I − AV (t)∥F for different γ: in [0, 10−5] (left) and [0, 10−1] (right).

Graphs in Figure 11 confirm that larger values of the gain parameter γ initiate faster
convergence ∥I − AV (t)∥ → 0.



Simulink implementation of GNN(A,B,D)
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Numerical examples for GNN(A,B,D) model

Consider the following matrices

A =


−8 8 −4
11 4 −7
1 −4 3
0 12 −10
6 12 −12

 , B =


12 −4 −16
−35 −10 45
2 −5 −3
14 17 −17

 ,

D =


−84 2524 304

−2252 −623 2897
484 −885 −701

−1894 2278 2652
−2778 1524 3750

 .



Numerical examples for GNN(A,B,D) model

All three matrices are of rank r = 2 and satisfy the condition AA†DB†B = D.
We use the GNN(A,B,D) model (4) to compute the minimum norm least squares
solution

X = A†DB† =


197968
75725

2043
1165

35007
15145

− 479239
75725

− 17404
3029

660
233

− 11337
3029

21877
3029

296594
75725

− 3431
1165

71137
30290

− 592049
151450


≈

 2.6143 1.75365 2.31146 −6.32868
−5.74579 2.83262 −3.74282 7.22252
3.91672 −2.94506 2.34853 −3.9092

 .

of the matrix equation AXB = D.

The parameters of the GNN(A,B,D) model are γ = 10 and V (0) = 0.



Numerical examples for GNN(A,B,D) model

Elementwise trajectories of V (t) are shown on the left graphs in Figure 1. It is evident
that these trajectories follow a usual convergence behaviour towards the Equilibrium
states, which have no further tendency to change in time.
Right graphs in Figure 1 show the error norm ∥E(t)∥F = ∥D − AV (t)B∥F when both
linear and non-linear activation functions are used.
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Figure 12: Elementwise trajectories of GNN(A,B,D) (left) and the error norm trajectories for
different activations (right).



Particular GNN(A,B,D) models

(a) GNN(A, I , I ) model is aimed to solving AX = I and uses the error matrix

E(t) = AV (t)− I .

It was proposed in 1993.
Its dynamics can be expressed as

V̇ (t) =
dV (t)

dt
= −γATF (AV (t)− I ) , V (0) = V0. (25)

Corollary 2

The general solution of the GNN(A, I , I ) model, given in (25), is equal to

ṼV (0) = A† + V (0)− A†AV (0).

The GNN(A, I , I ) model can be used in:
- finding the inverse of nonsingular A, starting from arbitrary V (0);
- approximating the left inverse of a full-column rectangular matrix A, starting from
arbitrary V (0);
- computing the pseudoinverse of rank-deficient matrices under the zero initial
condition V (0) = 0.
Analyse differerent V (0).



Particular GNN(A,B,D) models
(b) The Moore-Penrose inverse A† satisfies ATAA† − AT = O.
So, the scalar goal function is equal to

ε(t) =
1

2
∥ATAV (t)− AT∥2F .

Therefore, the linear GNN model (called LGNN-L) for approximating the
Moore-Penrose inverse was defined as

V̇ (t) = −γ
∂ε(V (t))

∂V
= −γATA

(
ATAV (t)− AT

)
. (26)

Simulink implementation of GNN (26) is presented in Figure 13.

AT A

 AT AV(t)-AT

-γAT A( AT AV(t)-AT)=V'(t)

AT A( AT AV(t)-AT)

A

Matrix A

A'
Matrix

Multiply

Matrix
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Matrix
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A'AV(t)

-K-

γ

1/s

-1

Constant

-0.16667882785035 0.33

0.083321172149654 0.083
Time

Scope

V(t)

Figure 13: Simulink implementation of GNN (26) for computing A†.



Particular GNN(A,B,D) models
(c) GNN model for solving the matrix equation AXA = A was introduced as the
GNN-MP model in
[NEPL2018][P.S. Stanimirović, M.D. Petković, D. Gerontitis, Gradient neural network
with nonlinear activation for computing inner inverses and the Drazin inverse, Neural
Processing Letters 48 (2018), 109–133.

The GNN(A,A,A) model is defined from the error E(t) = A− AV (t)A as

dV (t)

dt
=γATF (A− AV (t)A)AT = γATF (E(t))AT, V (0) = V0.

Corollary 3

[NEPL2018] Let A ∈ Rm×n be arbitrary real matrix. Then:
1. The matrix of activation state variables V (t) ∈ Rn×m in the GNN(A,A,A) is
convergent when t → +∞ and its limiting value satisfies

ṼV (0) = A† + V (0)− A†AV (0)AA†.

2.
{
ṼV (0)| V (0) ∈ Rn×m

}
= A{1}.

The proof of part 2. follows from

A{1} =
{
A(1) + Y − A(1)AYAA(1)

}
,

for arbitrary A(1).



Particular GNN(A,B,D) models
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Figure 14: Simulink implementation of the GNN(A,A,A) model.



Tutorial 5:

Tutorial 5:
Implementation of GNN and ZNN models for solving various time-varying matrix
equations.
Applications in computing generalized inverses and solving linear systems.



Particular GNN(A,B,D) models

Proposition 1

Let A ∈ Cm×n
r be an arbitrary matrix, 0 < s ≤ r and A = PQ is a full-rank

factorization of A. The following general representations for some classes of
generalized inverses are valid:

A{2}s = {F (GAF )−1G | F ∈Cn×s, G ∈Cs×m, rank(GAF )=s};
A{2} = ∪r

s=0A{2}s ;

A{2, 4}s =
{
(VA)†V | V ∈ Cs×m, VA ∈ Cs×n

s

}
;

A{2, 3}s =
{
U(AU)† | U ∈ Cn×s , AU ∈ Cm×s

s

}
;

A{1, 2}= A{2}r ; A{1, 2, 4} = A{2, 4}r ; A{1, 2, 3} = A{2, 3}r
A†=Q∗(P∗AQ∗)−1P∗;

A square matrix A has a group inverse if and only if QP is nonsingular, in which case

A# = P(QP)−2Q.



Particular GNN(A,B,D) models

(d) GNN for solving GAX=G.
Let A ∈ Cm×n

r be given and G ∈ Cn×m
s , 0 < s ≤ r , be appropriately chosen matrix

such that
GA(GA)†G = G .

This condition is satisfied if A and G fulfil

rank(GA) = rank(AG) = rank(G).

The GNN model for solving the matrix equations GAX = G is denoted by
GNN(GA, I ,G).
The underlying error matrix is E(t) = GAV (t)− G and its neural dynamics is

dV (t)

dt
=−γ(GA)TF (GAV (t)− G) , V (0)=V0.



Particular GNN(A,B,D) models

Corollary 4

Assume that the real matrices A ∈ Rm×n
r , G ∈ Rn×m

s satisfy 0 < s ≤ r and

rank(GA) = rank(G) ⇐⇒ GA(GA)†G = G .

Then:
(i) The unknown matrix V (t) of the model GNN(GA, I ,G)

dV (t)

dt
= −γ (GA)T (GAV (t)− G) , V (0) arbitrary (27)

is convergent when t → +∞ and has the limit value

ṼV (0) = (GA)†G + V (0)− (GA)†GAV (0). (28)

(ii) In particular, V (0) = 0 initiates Ṽ0 = (GA)†G = A
(2,4)

R((GA)T),N (G)
.



Particular GNN(A,B,D) models

The Simulink implementation of GNN(GA, I ,G) is illustrated in Figure 15.

(GA)T
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Figure 15: Simulink implementation of GNN(GA, I ,G).



RNN models arising from GNN models

One specific model for computing A
(2)
R(G),N (G)

was defined in

[NECO 2016][I. Živković, P.S. Stanimirović, Y. Wei, Recurrent Neural Network for
Computing Outer Inverses, Neural Computation 28:5 (2016), 970–998]
by omitting the constant term (GA)T in the GNN(GA, I ,G) model:

dV (t)

dt
=−γ(GA)TF (GAV (t)−G) , V (0)=V0.

The resulting dynamics is shortly termed in [NECO 2016] as GNNATS2 model, and
defined as

V̇ (t) = −γ F (GAV (t)− G) , V (0) = 0. (29)



RNN models arising from GNN models

The Simulink implementation of GNNATS2 dynamics (29) is illustrated in Figure 16.
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Time
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Frobenius Norm

Display1

simout1

To Workspace1
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Figure 16: Simulink implementation of V̇ (t) = −γ F (GAV (t) − G).



RNN models arising from GNN models

Theorem 3

Let A ∈ Rm×n be given matrix, G ∈ Rn×m
s be arbitrary matrix satisfying 0 < s ≤ r ,

and
σ(GA) = {λ1, λ2, . . . , λn}

be the spectrum of GA. Suppose that the condition

Re
(
λj

)
≥ 0, j = 1, 2, . . . , n (30)

is satisfied. Then:
(a) The exact solution to the RNN(GA, I ,G) evolution dVR (t)

dt
= −γ (GAVR(t)− G)

is equal to

VR(t) = e−γt GAVR(0) +
(
I − e−γt GA

)
A
(2)
R(G),N (G)

. (31)

(b) If the initial approximation is the zero matrix: VR(0) = O, then the exact solution
to RNN(GA, I ,G) is

VR(t) =
(
I − e−γt GA

)
A
(2)
R(G),N (G)

. (32)

(c) the limiting value V of the GNNATS2 model produces the outer inverse

A
(2)
R(G),N (G)

, i.e.,

lim
t→∞

VR(0) = V (0) = A
(2)
R(G),N (G)

. (33)



RNN models arising from GNN models

Proof. (a) According to the linear dynamical systems theory [?], the closed-form
solution of the state matrix V (t) of RNN(GA, I ,G) evolution is equal to

VR(t) = e−γt GAVR(0) + γe−γt GA
∫ t

0
eγ GA τG dτ. (34)

(c) Applying several elementary transformations and the basic property

GAA
(2)
R(G),N (G)

= G of the outer inverse A
(2)
R(G),N (G)

, it follows that

V R(0) = lim
t→∞

γe−γGAt
∫ t

0
eγGAτG dτ

=

[
lim

t→∞
e−γGAt

∫ t

0
eγGAτ (γGA) dτ

]
A
(2)
R(G),N (G)

=

[
lim

t→∞
e−γGAteγGAτ

∣∣∣τ=t

τ=0

]
A
(2)
R(G),N (G)

=
[
lim

t→∞
e−γGAt

(
eγGAt − I

)]
A
(2)
R(G),N (G)

=
(
I − lim

t→∞
e−γGAt

)
A
(2)
R(G),N (G)

.

Then (33) can be verified using limt→∞ e−γGAt = O.



RNN models arising from GNN models
The application of the GNNATS2 model is conditioned by the properties of the
spectrum of the matrix GA:

σ(GA) ⊂ {z : Re (z) ≥ 0}. (35)

More precisely, the application of the GNNATS2 model diverges in the case when
Re (σ(GA)) contains negative values.

Consider
A=[1 -1 0 0 0 0; -1 1 0 0 0 0; -1 -1 1 -1 0 0; -1 -1 -1 1 0 0; -1 -1 -1 0 2 -1; -1 -1 0 -1
-1 2], G=-A’
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Figure 17: Divergence of the GNNATS2 in the case when Re (σ(GA)) contains negative values.



RNN models arising from GNN models

An approach to assure the requirement (35):

σ(GA) ⊂ {z : Re (z) ≥ 0}

and recover global stability was proposed in
[I. Živković, P.S. Stanimirović, Y. Wei, Recurrent Neural Network for Computing
Outer Inverses, Neural Computation 28:5 (2016), 970–998.]
and it is based on the replacement of G by G0 = G(GAG)TG in GNNATS2 model.

The leading idea is that G and G0 produce the same outer inverse, because of
R(G) = R(G0), N (G) = N (G0), and σ(G0A) ≥ 0.

But, this approach requires additional matrix multiplications during the computation
of the matrix G0 instead of G and sometimes causes numerical stability.



RNN models arising from GNN models
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Figure 18: Convergence of the network when inappropriate G is replaced by G0



RNN models arising from GNN models

A simplification of the GNN model which is applicable in computing the Drazin inverse
AD was proposed in
[IEEEE TNNLS 2015] P.S. Stanimirović, I. Živković, Y. Wei, Recurrent Neural
Network for Computing the Drazin Inverse, IEEE Transactions on Neural Networks
and Learning Systems, 26(11) (2015), 2830-2843.

This model can be derived removing the constant term
(
Ak+1

)T
in GNN(Ak ,A,Ak ),

k ≥ ind(A). We can rewrite the equation (1k ) in the form

Ak+1VD(t)− Ak = 0, (36)

where m ≥ ind(A), and VD ∈ Rn×n denotes the unknown matrix to be solved which
corresponds to the matrix AD. To solve for VD(t) via dynamic system approach, we
can define a scalar-valued norm based error function:

εD(t) =
∥Ak+1VD(t)− Ak∥2F

2
, k ≥ ind(A).

Note that minimal value ε(t) = 0 of the residual-error function ε(t) is achieved in a
minimum point V = V (t) if and only if V (t) is the exact solution of Ak+1X = Ak .



RNN models arising from GNN models

The derivative of E with respect to V ∈ Rn×n could simply be derived as

∂εD(t)

∂VD
=
(
Ak+1

)T (
Ak+1VD(t)− Ak

)
. (37)

A particular RNN for computing the Drazin inverse AD was proposed in [IEEEE
TNNLS 2015]. This model can be derived removing the first constant term in
GNN(Ak ,A,Ak ), k ≥ ind(A), and it is defined as the following RNN(Ak ,A,Ak )
dynamics:

V̇D(t) = −γ
(
Ak+1VD(t)− Ak

)
, k ≥ ind(A), VD(0) = V0. (38)

Accordingly, an application of the model (38) is conditioned by

Re
(
λk+1
j

)
≥ 0, j = 1, . . . , n, (39)

where σ(Ak+1) = {λk+1
1 , . . . , λk+1

n } is the spectrum of Ak+1 , k ≥ ind(A) and
{λ1, . . . , λn} is the spectrum of A.
One method to resolve the limitation (39) is based on the possibility to find an
appropriate power k such that (39) holds.
Another possibility to ensure the nonnegativity of the spectrum of the form (39) is

based on the usage of the matrix Ak
(
A2k+1

)T
Ak , k = ind(A).



Dynamical systems for computing DMP inverse

The GNN dynamics for computing the DMP inverse AD,† = ADAA† is proposed in
[DMP] [H. Ma, X. Gao, P.S. Stanimirović, Characterizations, iterative method, sign
pattern and perturbation analysis for the DMP Inverse with its applications, Applied
Mathematics and Computation 378 (2020),
https://doi.org/10.1016/j.amc.2020.125196.]
The GNN for generating solutions to the matrix equation GAX = G is given by the
dynamical system

V̇ (t) = −γ (GA)T (GAV (t)− G) , V (0) = V0.

The authors of [?] defined the following simplified dynamical evolution for solving the
matrix equation GAX = G :

V̇ (t) = −γ (GAV (t)− G) , V (0) = O. (40)

The dynamical evolution (40) will be termed as GNNATS2(GA, I ,G).
The range space and null space of the DMP inverse are defined as follows:

R(AD,†) = R(Ak ), N (AD,†) = N (AkA†).



Dynamical systems for computing DMP inverse

Dynamical systems for computing DMP inverse Several additional properties of the
DMP inverse are developed in Lemma 1 from [DMP] in order to define an appropriate
error monitoring function E(t) and corresponding GNN model.

Lemma 1

Let A ∈ Cn×n satisfy ind(A) = k. Then the DMP inverse AD,† satisfies the following
properties:

AkA†AAD,† = AkAD,† = AkA† (41)

AD,†AA∗ = ADAA∗ (42)

AkAD,†A = Ak (43)

In view of (41), the dynamical system of the form (40) for computing AD,† can be
defined by dynamics GNNATS2(AkA†A, I ,AkA†), which produces

V̇ (t) = −γ
(
AkA†AV (t)− AkA†

)
= −γ

(
AkV (t)− AkA†

)
, V (0) = O. (44)



Dynamical systems for computing DMP inverse

Consider the matrix

A =


1 −1 0 0 0 0

−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2

 (45)

satisfying rank(A) = 5, rank(A2) = rank(A3) = 4. Therefore, k = ind(A) = 2.
The DMP inverse of A in the error-free form is given by

AD,† = A2(A5)†A3A† =



1
4

− 1
4

0 0 0 0

− 1
4

1
4

0 0 0 0

0 0 1
4

− 1
4

0 0

0 0 − 1
4

1
4

0 0

0 0 − 5
12

− 7
12

2
3

1
3

0 0 − 7
12

− 5
12

1
3

2
3

 . (46)



Dynamical systems for computing DMP inverse

The condition Re
(
λj

)
≥ 0, j = 1, 2, . . . , n is satisfied for A2.

The architecture of GNNATS2(A2, I ,A2A†) is presented in the corresponding Matlab
Simmulink implementation as in Figure 19.
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Figure 19: Simulink implementation of GNNATS2(A2, I ,A2A†).



Lecture 20:

Lecture 20:
- Existence and representations of solutions to some constrained matrix equations and
systems of matrix equations.
- Computation of various generalized inverses arising from corresponding systems of
matrix equations.



Outer generalized inverses and equations

Now, we consider algorithms based on the general framework consisting of two main
steps:

1. Solve a particular linear matrix equation.

2. If necessary, multiply the solution derived in the first step by some appropriate
matrices.

We consider several algorithms arising from this general framework whose results are
certain inner or outer inverses with prescribed range and/or null space.
First results were published in
[Complexity 2017][P.S. Stanimirović, M. Ćirić, I. Stojanović, D. Gerontitis, Conditions
for existence, representations and computation of matrix generalized inverses,
Complexity, Volume 2017, Article ID 6429725, 27 pages.]



Outer generalized inverses and equations

Theorem 4

Let A ∈ Cm×n, B ∈ Cn×k , C ∈ Cl×m.
(a) The following statements are equivalent:

(i) there exists a {2}-inverse X of A satisfying R(X ) = R(B), denoted by A
(2)
R(B),∗;

(ii) there exists U ∈ Ck×m such that BUAB = B;

(iii) N (AB) = N (B);

(iv) B(AB)(1)AB = B, for some (equivalently every) (AB)(1) ∈ (AB){1};
(v) rank(AB) = rank(B).

(b) If the statements in (a) are true, then the set of all outer inverses with the
prescribed range R(B) is represented by

A{2}R(B),∗ =
{
B(AB)(1)

∣∣ (AB)(1) ∈ (AB){1}
}

= {BU | U ∈ Ck×m, BUAB = B}.
(47)

Moreover,

A{2}R(B),∗ =
{
B(AB)(1) + BY

(
Im − AB(AB)(1)

) ∣∣∣ Y ∈ Ck×m
}

= B(AB){1}.



Outer generalized inverses and equations

Theorem 4 provides not only criteria for the existence of an outer inverse A
(2)
R(B),∗ with

prescribed range, but also provides a method for computing such an inverse.

Namely, the problem of computing a {2}-inverse X of A satisfying R(X ) = R(B)
boils down to the problem of computing a solution to the matrix equation
BUAB = B, where U ∈ Ck×m is an unknown matrix.

If U is an arbitrary solution to this equation, then X := BU is a {2}-inverse of A
satisfying R(X ) = R(B).

Algorithm 1 Computing an outer inverse with prescribed range.

Require: Matrices A ∈ Cm×n and B ∈ Cn×k .
1: Verify rank(AB) = rank(B).

If this condition is satisfied then continue.
2: Solve the matrix equation BUAB = B with respect to U ∈ Ck×m.

3: Return X = BU = A
(2)
R(B),∗.



Outer generalized inverses and equations

Approach used in [Complexity 2017] for solving BUAB = B is based on Gradient
Neural Networks is based on the Gradient Neural Network (GNN) dynamical system
for minimizing the Frobenius norm ∥BUAB=B∥F .

The GNN(B,AB,B) model for solving BXAB = B is defined by

V̇ (t) = BTF(B − BV (t)AB)(AB)T (48)

It gives the solution ṼV (0) ∈ (AB){1}.
Then, according to Theorem 4

X := BṼV (0) ∈ A{2}R(B),∗.

The Simulink implementation of Algorithm 1 in the set of real matrices is based on
the G-GNN model. Since the goal is solving the matrix equation
B(t)U(t)A(t)B(t) = B(t), it is necessary to implement the model GNN(BU,B,B).
Matlab Simulink implementation is presented in Figure 20.



U(t)

B(t)

A(t)

ATS2

U(t)

U(t)

ΒUΑΒ

ΒU

ΒUΑΒ-Β

ΒT

||ΒUΑΒ-Β||
F

ΑΒ

F(ΒUΑΒ-Β)

ΒTF(ΒUAB-Β)(ΑΒ)T

(ΑΒ)T

-γBTF(BUAB-B)(AB)T

B

1
s

0.01
Interpreted

MATLAB Fcn

Interpreted
MATLAB Fcn uT

Matrix
Multiply

Matrix
Multiply

uT

Interpreted
MATLAB Fcn

In1 Out1

Matrix
Multiply

Matrix
Multiply

0.16729188613279 -0.16729188613279 0.0070960043000594 -0.12379431611517 -0.23632035736197 0.23975393715106

-0.20351950748583 0.20351950748583 -0.27983608953618 -0.073125619433718 -0.11275780439812 -0.38555088007922

0.078658723523794 -0.078658723523794 -0.068710085242188 -0.11764113059559 -0.21744462908836 0.087790541577969

-0.10552366022884 0.10552366022884 -0.17637122473086 -0.063717734134496 -0.1046255303545 -0.21073272486335

0.017403113160627 -0.017403113160627 -0.04941464892293 -0.054251479015544 -0.098601832706734 0.0075807572301646

-0.063372526402258 0.063372526402258 -0.11860691780687 -0.048731688366816 -0.08155673663585 -0.13094763605936

-0.012093156431155 0.012093156431155 -0.027072773215094 -0.012961585764934 -0.022115097577233 -0.026524992280848

0.098090469472085 -0.098090469472085 -0.064636291292574 -0.12933971846588 -0.24009851433618 0.11676393765101

Matrix
Multiply

3.9860910728676e-17

-K-

Figure 20: Simulink implementation of the GNN model for computing BUAB = B,
X = BU ∈ A{2}R(B),∗.



Outer generalized inverses and equations

The Simulink Scope and Display block denoted by U(t) represents input signals
corresponding to the solution U(t) of the matrix equation B(t)U(t)A(t)B(t) = B(t)
with respect to the time t. The underlying G-GNN dynamics in the simulink presented
in Figure 20 is

U̇(t) = −γB(t)TF (B(t)U(t)A(t)B(t)− B(t)) (A(t)B(t))T.

The Display block denoted by BU displays inputs signals corresponding to the solution
X (t) = B(t)U(t).

The block Subsystem implements the Power-sigmoid activation function and it is
presented in Figure 21.
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Figure 21: Block for the implementation of the Power-sigmoid activation function (left) and its
Subsystem (right).



Output of RNN models in further calculations

Theorem 5

Let A ∈ Cm×n, B ∈ Cn×k and C ∈ Cl×m.
(a) The following statements are equivalent:

(i) there exists a X ∈ A{2} satisfying R(X ) = R(B) and N (X ) = N (C);

(ii) there exist U ∈ Ck×l such that BUCAB = B and CABUC = C;

(vi) N (CAB) = N (B), R(CAB) = R(C);

(vii) rank(CAB) = rank(B) = rank(C);

(viii) B(CAB)(1)CAB = B and CAB(CAB)(1)C = C, for some (equivalently every)
(CAB)(1) ∈ (CAB){1}.

(b) If the statements in (a) are true, then the unique {2}-inverse of A with the
prescribed range R(B) and null space N (C) is represented by

A
(2)
R(B),N (C)

= B(CAB)(1)C

= BUC ,

for arbitrary (CAB)(1) ∈ (CAB){1} and arbitrary U ∈ Ck×l satisfying BUCAB = B
and CABUC = C.



Output of RNN models in further calculations

Algorithm for computing A
(2)
R(B),N (C)

= B(CAB)(1)C was defined in [Complexity 2017]

Algorithm 2 Computing a {2}-inverse with the prescribed range and null space.

Require: Time varying matrices A(t) ∈ Cm×n, B(t) ∈ Cn×k and C(t) ∈ Cl×m.

1: Verify rank(C(t)A(t)B(t)) = rank(B(t)) = rank(C(t)).
If these conditions are satisfied then continue.

2: Solve the matrix equation B(t)U(t)C(t)A(t)B(t) = B(t) with respect to an un-
known matrix U(t)∈Ck×m.

3: Return X (t) = B(t)U(t)C(t) = A(t)
(2)
R(B),N (C)

.



Output of RNN models in further calculations
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Figure 22: Simulink implementation of Algorithm ??.


